●The AFE5807 is an integrated Analog Front-End (AFE) solution specifically designed for ultrasound systems in which high performance and small size are required. The AFE5807 integrates a complete time-gain-control (TGC) imaging path and a continuous wave Doppler (CWD) path. It also enables users to select one of various power/noise combinations to optimize system performance. Therefore, the AFE5807 is a suitable ultrasound analog front end solution not only for high-end systems, but also for portable systems.
●The AFE5807 contains eight channels of voltage controlled amplifier (VCA), 12-bit Analog-to-Digital Converter (ADC), and CW mixer. The VCA includes Low noise Amplifier (LNA), Voltage controlled Attenuator(VCAT), Programmable Gain Amplifier (PGA), and Low-Pass Filter (LPF). The LNA gain is programmable to support 250 mVPP to 1 VPP input signals. Programmable active termination is also supported by the LNA. The ultra-low noise VCAT provides an attenuation control range of 40 dB and improves overall low gain SNR which benefits harmonic imaging and near field imaging. The PGA provides gain options of 24 dB and 30 dB. Before the ADC, a LPF can be configured as 10 MHz, 15 MHz, 20 MHz or 30 MHz to support ultrasound applications with different frequencies. The high-performance 12 bit/80 MSPS ADC in the AFE5807 achieves 70 dBFS SNR. It ensures excellent SNR at low chain gain. The ADC’s LVDS outputs enable flexible system integration desired for miniaturized systems. The AFE5807 also integrates a low power passive mixer and a low noise summing amplifier to accomplish on-chip CWD beamformer. 16 selectable phase-delays can be applied to each analog input signal. Meanwhile a unique 3rd and 5th order harmonic suppression filter is implemented to enhance CW sensitivity.
●The AFE5807 is available in a 15mm × 9mm, 135-pin BGA package and it is specified for operation from 0°C to 85°C. It is also pin-to-pin compatible to the AFE5808, AFE5803, and AFE5808A. In addtion, AFE5809 is another member with enhanced digital demodulation features in this family.