Web Analytics
Part Datasheet Search > Microprocessors > OMAPL138 Datasheet PDF
Images are for reference

OMAPL138 Datasheet PDF

Part Series:
OMAPL138 Series
Category:
Microprocessors
Description:
Applications Processor 361Pin NFBGA
Updated Time: 2023/01/13 01:50:20 (UTC + 8)

OMAPL138 Datasheet PDF Microprocessors

288 Pages
TI
0-BIT, 50MHz, OTHER DSP, PBGA361, 13 X 13MM, 0.65MM PITCH, GREEN, PLASTIC, NFBGA-361
288 Pages
TI
ARM926EJ-S Microprocessor IC OMAP-L1x 1 Core, 32Bit 375MHz 361-NFBGA (13x13)
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 375MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 456MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
Microprocessor, 456MHz, 32Bit, 32KB, 1.25V to 1.35V, NFBGA-361
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 375MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 375MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 375MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 456MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 456MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 375MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
OMAP-L138 C6000 DSP ARM Processor
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 456MHz 3648MIPS 361Pin NFBGA
286 Pages
TI
DSP Fixed-Point/Floating-Point 32Bit 456MHz 3648MIPS 361Pin NFBGA
284 Pages
TI
Applications Processor 361Pin NFBGA
284 Pages
TI
16Bit, 30MHz, OTHER DSP, PBGA361, 16 X 16MM, 0.8MM PITCH, GREEN, PLASTIC, NFBGA-361

OMAPL138BGWTMEP - TI Specifications

TYPE
DESCRIPTION
Mounting Style
Surface Mount
Number of Pins
361 Pin
Case/Package
LFBGA-361
RAM Memory Size
8 KB
Number of UARTs
3 UART
show more

OMAPL138BGWTMEP - TI Function Overview

The OMAPL138B C6-Integra™ DSP+ARM® processor is a low-power applications processor based on an ARM926EJ-S™ and a C674x DSP core. It provides significantly lower power than other members of the TMS320C6000™ platform of DSPs.
The device enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.
The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance.
For security enabled devices, TI’s Basic Secure Boot allows users to protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based “root-of-trust”, the secure boot flow guarantees a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks but can be enabled during the secure boot process during application development. The boot modules themselves are encrypted while sitting in external non-volatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. This protects the users’ IP and enables them to securely set up the system and begin device operation with known, trusted code. Basic Secure Boot utilizes either SHA-1 or SHA-256, and AES-128 for boot image validation. It also uses AES-128 for boot image encryption. The secure boot flow employs a multi-layer encryption scheme which not only protects the boot process but offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect user encryption keys. When an update is needed, the customer creates a new encrypted image using its encryption keys. Then the device can acquire the image via an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, refer to the _TMS320C674x/OMAP-L1x Processor Security User’s Guide_ (SPRUGQ9).
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two inter-integrated circuit (I2C) Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSP) with FIFO buffers; two SPI interfaces with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 9 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed DDR2/Mobile DDR controller.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces.
The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).
The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs or other parallel devices. The UPP supports programmable data widths between 8- to 16-bits on each of two channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE and WAIT signals to provide control for a variety of data converters.
A Video Port Interface (VPIF) is included providing a flexible video input/output port.
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The device has a complete set of development tools for the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
show more
Part Datasheet PDF Search
Loading...
72,405,303 Parts Datasheet PDF, Update more than 5,000 PDF files ervery day.

Relate Parts